Uka Tarsadia University		
Diploma Engineering MCQ Question bank		
Subject Code: 020030602	Date:	
Subject Name: Design of RCC Structures		

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Each question is of 1 mark.
- 4. Use of SIMPLE CALCULATOR is permissible. (Scientific/Higher Version not allowed)
- 5. English version is authentic.

Unit 3- Design of Slabs				
1	The effective span of a simply supported slab, is			
	Distance between the centres of the bearings	Clear distance between the inner faces of the walls plus twice the thickness of the wall		
	Clear span plus effective depth of the slab	None of the above		
2	Design of a two way slab simply supported on e corners from lifting, is made by	edges and having no provision to prevent the		
	Rankine formula	Marcus formula		
	Rankine Grashoff formula	Grashoff formula		
3	The transverse reinforcements provided at right	t angles to the main reinforcement		
	Distribute the load	Resist the temperature stresses		
	Resist the shrinkage stress	All of the above		
4	The amount of reinforcement for main bars in a	slab, is based upon		
	Minimum bending moment	Maximum bending moment		
	Maximum shear force	Minimum shear force.		
5	The percentage of minimum reinforcement of the	ne gross sectional area in slabs, is		
	0.10 %	0.12 %		
	0.15 %	0.18 %		
6	In a simply supported slab the minimum spacing of distribution reinforcement, should be four times the effective thickness of the slab or			
	300 mm	400 mm		
	500 mm	600 mm		
	· · ·	· · ·		
7	If the sides of a slab simply supported on edges and spanning in two directions are equal,			

	the maximum bending moment is multiplied by		
	0.2	0.4	
	0.5	0.7	
		1	
8	Distribution reinforcement in a simply supported	slab, is provided to distribute	
	Load	Temperature stress	
	Shrinkage	All of the above	
	-		
9	The maximum ratio of span to depth of a cantile	ver slab, is	
	8	10	
	12	14	
10	An R.C.C. roof slab is designed as a two way sla		
	It supports live loads in both directions	less than 2	
	The slab is continuous over two supports	The slab is discontinuous at edges.	
11	In a slab, the pitch of the main reinforcement sh	ould not exceed its effective depth	
	3 times	4 times	
	2 times	5 times	
12	The maximum ratio of span to depth of a slab si	mply supported and spanning in one direction,	
	lis		
	25	30	
	35	50	
12	In a simply supported slab, alternate bars are or	utailed at	
15	1/4th of Spon	1/5th of Span	
	1/4th of Span	1/Julth of Span	
		1/10th 01 Span	
14	In a one way slab load is distributed over		
11	Shorter side	Longer side	
	Both side	None of the above	
15	In a two way slab load is distributed over		
	Shorter side	Longer side	
	Both side	None of the above	
16	Slab always carried by default		
	UDL	Point load	
	Both	None of the above	
17	What is the compation for any 110		
1/	what is the correct equation for one way slab? $\frac{1}{1}$	1/ly <2	
	$\frac{1}{1} \frac{1}{1} \frac{1}$	IV/IX <2	
	$ 1y/1X \ge 2$	None of the above	
10	Which also is resting directly on the achiment		
18	Contilever eleb	Flat slab	
	Canulevel slad	riat siau	

	Simply supported slab	Continuous slab		
10				
19	One way slab	Flat slab		
	Continuous slab	Two way slab		
	Continuous stud	1 wo way sho		
20	Which type of slabs allow excess floor height	?		
	Cantilever slab	Flat slab		
	Simply supported slab	Continuous slab		
21	Which type of slabs are only supported on per	iphery?		
	Cantilever slab	Flat slab		
	Grid Slabs	Continuous slab		
22	Store limit state theory, which type of englysis	via dono for alaba?		
	Elastic analysis	Non Elastic analysis		
	Flexural Analysis	None of the above		
	Tioxutur Thurysis			
23	Which type of slots are preferred for construct	ion of a hall or theatre?		
	Cantilever slab	Flat slab		
	Grid Slabs	Continuous slab		
24	As per IS 456 what is the ratio of span to dept	h for simply supported slab?		
	30	20		
	7	None of the above		
25				
25	For steel grade ie415 what is the modification			
	1.23	1 50		
	1.15	1.50		
26	For HYSD bars what is the minimum percenta	age of reinforcement in one way slab?		
	0.12 %	0.15 %		
	0.2 %	0.8 %		
27	What is the criteria for maximum diameter of	bar in slab?		
	1/4 D	1/ 8 D		
	1/ 5 D	1/ 10 D		
28	What is the criteria for main bars as minimum	diameter in slab?		
	8 mm	12 mm		
	10 mm	16 mm		
20	What is the enterie for 1' to '1' to '1'	inner diameter in state		
29	what is the criteria for distribution bars as mir	imum diameter in slab?		
	0 IIIII 10 mm	0 IIIII 12 mm		
	10 11111	12 11111		
30	30 As per IS 456 2000 what is the maximum value for main Steel spacing in slab?			
50	300 mm	450 mm		
	500 mm			

	400 mm	250 mm		
31	As per IS 456 2000 what is the maximum value	ue for distribution Steel spacing in slab?		
-	300 mm	450 mm		
	400 mm	250 mm		
22	How much rainforgement should be provided	on top as bont up in slab?		
52	30 %			
	35 %			
33	What is the alternative of bent up if more than slab?	n 50% Steel is required as minimum steel in		
	Only Bent up	Chipiya		
	Development length	None of the above		
34	In which type of slab torsion at corners is not	produced?		
	Simply Supported two way slab	Restrained Slab		
	One way slab	All of the above		
35	In which type of slab the edge strips are provi	ded??		
55	Simply Supported two way slab	Restrained Slab		
	One way slab	All of the above		
36	The length of bar in torsion reinforcement in a	each layer in restrained slab is		
	lx/ 2	lx/6		
	lx/4	lx/5		
27				
37	For d=150 mm, calculate effective span if clea	ar span is 3200 mm. Provided support of		
	3350 mm	3500 mm		
	3200 mm	None of the above		
38	What is the maximum bending moment gener	ated in one way slab??		
	M= w. 1/4	M = w.1.1/8		
	M = w.1/2	None of the above		
20		0.016		
39	Find area of steel Ast in one way slab if $Pt=0$	3.215		
	100 mm^2	$\frac{430 \text{ mm}}{222 \text{ mm}^2}$		
	100 1111	522 11111		
40	What is the equation for spacing of main bars	in slab?		
	A/Ast	Ast/A		
	Pt. bD	None of the above		
41	What is the minimum amount of cover provid	ed in slabs?		
	15 mm	20 mm		
	30 mm	40 mm		
41	Pt. bD What is the minimum amount of cover provid 15 mm 30 mm	None of the above ed in slabs? 20 mm 40 mm		

42	For M20 and Fe 250, what is the value of development length for a 10 mm bar in slab?			
		442 mm		500 mm
		453 mm		484 mm
43	Wh	at is the value of shear stress developed in	a one	e way slab is shear force is 13500
	Nev	wton and 100 mm thickness?		
		T = 0.135		T= 135
		$T_{r} = 13.5$		T = 1.35
		0 15.5		0 1.55
44	For	d=175 mm, calculate effective span if clea	ir spa	n is 2200 mm. Provided support of 300
	mm	l	1	11
		2200 mm		2375 mm
		2500 mm		None of the above
45	For	Fe 250 and $fs = 415$ what is the magnificat	ion fa	actor?
		2.5		1.5
		2.0		None of the above
46	Wh	at is the depth of the slab is $Fy = 250$, M2	0 and	moment M = $10125 \times 10^{6?}$
		d = 60		d = 100
		d = 150		d = 80
47	For	which purpose bent ups are provided?		
		To resist moment		To resist shear
		To resist torsion		None of the above
	1			
48	Wh	ere does chipiya provide in slab?		
		When shear is too high		When bending moment is too high
		When Ast required is too low		All of the above
	**			
49	Ho	w it is identified that slab is one way or two	o way	·?
		ly/lx		ly x lx
		ly = 2. Ix		None of the above
	** *1			
50	Wh	at is the value of shear stress developed in	a one	e way slab is shear force is 12500
	Newton and 100 mm thickness?			
		T-1 25		Т- 125
		0-1.25		0-125
		$T_{0} = 12.5$		T= 0.125
	Unit 4- Design of Shear Reinforcement and Development length			
1	An R.C.C. beam not provided with shear reinforcement may develop cracks in its bottom			

	inclined roughly to the horizontal at		
	30 degree	45 degree	
	60 degree	15 degree	
		· · · · · · · · · · · · · · · · · · ·	
2	The maximum shear stress (q_{max}) in a rectangular beam is		
	1.25 times the average	1.75 times the average	
	1.50 times the average	2.0 times the average	
3	The radius of a bar bend to form a hook, should	d not be less than	
_	twice the diameter	thrice the diameter	
	four times the diameter	None of the above	
4	The shear reinforcement in R.C.C. is provided	to resist	
-	Vertical shear	Horizontal shear	
	Diagonal Tension	Diagonal compression	
5	Spacing of stirrups in a rectangular beam, is		
-	kept constant throughout the length	decreased towards the centre of the	
		beam	
	increased at the ends	increased at the centre of the beam.	
6	the grip between concrete and cement in RCC	C structure is known as	
	Bond	Stress	
	Strength	None of the above	
7	The embedded length of reinforcement in cor	crete is known as	
	Bond length	Development length	
	Shear length	All of the above	
8	The equation for stresses in bar is		
	$\sigma_s = 0.46 \text{ fy}$	$\sigma_s=0.56$ fy	
	$\sigma = 0.87 \text{ fr}$	$\sigma = 0.26 \text{ fr}$	
	$0_{\rm S} = 0.87$ Ty	0 _s =0.30 ly	
9	The shear force acting in the direction of the	length of bar and unit area of the bar is called	
-	Shear Strength	Bond stress	
	Development strength	All of the above	
10	For the deformed bars in concrete how much	bond stress value should be increased	
		50%	
	60%	75 %	
11	If there are two reinforcement in the bundle b	ar how much increment in a development	
11	length can be done?	a, now much morement in a development	
		20 %	
	33 %	None of the above	

12	What can be used if the requirement of deve	elopment length is satisfied in tension?	
	Torsion reinforcement	Deformed bars	
	Plain bars	None of the above	
10		· 1	
13	For value of reinforcement Fe415 find stress	ses in bar	
	361.1 N/mm ²	342.21 N/mm ²	
	415 N/mm ²	250 N/mm ²	
1.4	Willow is the minimum Analysis and a second second	45 January 1-9	
14	what is the minimum Anchorage value for 4	45 degree bends?	
	2 time dia of bar		
	8 time dia of bar	All of the Above	
15	In the tension zone from which point the lar	acth of inaling har in shaar is magnirod?	
13	From Any point in hoom	Erom contro height of hoom	
	From Any point in deam	From centre neight of beam	
	From end of inclined bar	From bottom of the beam	
16	In stirrung what should be the Anaberrase la	noth from the 00 degree hand?	
10	In stirrups what should be the Anchorage le	light from the 90 degree bend?	
	10 times dia	None of the above	
	10 times dia	None of the above	
17	What is the development length in compatit	ion for 20 mm diameter and M20	
1 /	750 mm		
	730 IIIII 725 mm	200 mm	
	723 11111	800 11111	
18	What should be the ideal Anchorage value f	for 15 degree hooks?	
10	12 time dia of bar	1 time dia of bar	
	16 time dia of bar		
		All of the Above	
19	What is the value of shear stress at any section of heam?		
17			
	$\mathbf{T} = \mathbf{V}$. A. b/ I.y	$T_{\rm b} = V, A, y / I, b$	
	$T_{\rm H} = V_{\rm L} I_{\rm L} A / y_{\rm L} b$	$T_{\rm U} = V_{\rm L} b_{\rm L} y / I A$	
20	what is the value of sheer force at supports	in simply supported been?	
20	what is the value of shear force at supports $1 = \frac{1}{2}$		
	W.1/2		
	W.1.1/ 4	W.I.I/8	
21	For value of reinforcement Fe 250 find stress	sees in har	
21	361.1 N/mm^2	$\frac{3505 \text{ III bal}}{217.5 \text{ N/mm}^2}$	
	$\frac{301.1 \text{ N/mm}^2}{415 \text{ N/mm}^2}$	217.5 N/mm ²	
	+13 1\/11111		
22	For the compression bars in concrete how m	uch hand stress value should be increased	
	00/0		

23	Find the value of design bond stress for M20 and Fe415 steel.		
	1.2		1.52
	1.92		2.2
24	If there are three reinforcement in the bundle bar, how much increment in a development		
	length can be done?		
	10 %		20 %
	33 %		None of the above
25			
25	what can be used if the requirement of develo	pme	nt length is satisfied in tension and plain
	Torsion reinforcement		Deformed bars
	Hooks		None of the above
	1100K5		None of the above
26	The shear stress acting at 45 degree on princip	alnl	ane at simply supported beam is called
	Diagonal Compression	ur pr	Diagonal Tension
	Major shear		None of the above
27	In stirrups what should be the Anchorage leng	th fro	om the 235 degree bend?
	6 times dia		8 times dia
	10 times dia		None of the above
28	The cracks developed at 45 degree due to two	diag	onal tension is called
	Shear Cracks		Diagonal cracks
	compression cracks		None of the above
20		• •	
29	For value of reinforcement Fe 500 find stresse $2(1 \text{ N}/mm^2)$	s in	$217 \text{ N}/\text{mm}^2$
	301 N/mm		217 N/mm
	433 IN/IIIII		230 N/IIIII
30	30 The shear stress acting at 135 degree on minor principal plane at simply supported beam is		
	called	1	
	Diagonal Compression		Diagonal Tension
	Major shear		None of the above
31	the value of maximum bending moment acting	g at t	he centre of simply supported beam is
	w.1/2		w.l/ 4
	w.l.l/ 4		w.l.l/8
22	Find the value of design hand stress for \$100		ad15 staal
32	Find the value of design bond stress for Mi25 a	ina F	e415 steel.
	1.4		2.24
	1.92		2.92
33	In order to remain safe in shear what should be concrete?	e the	condition for shear strength of
	$T_v < T_c$		$T_v > T_c$

	$T_v = T_c$	None of the above
34	In stirrups what should be the Anchorage ler	ngth from the 180 degree bend?
	6 times dia	8 times dia
	4 times dia	None of the above
35	Incline steps are always led at	ee angle.
	30 degree	45 degree
	60 degree	90 degree
36	Find the value of design bond stress for M30	and Fe415 steel.
	1.5	2.24
	1.92	2.40
37	If there are four reinforcement in the bundle length can be done?	bar, how much increment in a development
	10 %	20 %
	33 %	None of the above
38	What is the value of nominal share stress if t & shear force is 165000 N?	he cross section of beam is 250 mm x 500 mm
	1.31 N/mm^2	1.32 N/mm^2
	1.33 N/mm ²	1.35 N/mm ²
39	What is the spacing of stirrups for beam with steel?	n Ast= 100 mm ² , 250 mm width and Fe415
	220 mm	300 mm
	100 mm	None of the above
40	Find the value of \overline{b}_c for 900 mm ² Ast and M2	20 concrete.
	1	0.56
	0.86	0.44
41	Shear Cracks are always in shape	
	Horizontal	Vertical
	Diagonal	Any of above three
42	What is the value of nominal share stress if t & shear force is 210000 N?	he cross section of beam is 300 mm x 420 mm
	1.67 N/mm^2	1.62 N/mm^2
	1.65 N/mm^2	1.69 N/mm^2
43	Find the value of design bond stress for M25 beam	5 and Fe415 steel in compression in doubly
	1.4	2.24
	2.8	3.0

44	What is the maximum Anchorage value	for 45 degree bends?
	16 time dia of bar	4 time dia of bar
	8 time dia of bar	All of the Above
45	Find the value of T_c for 1017 mm ² Ast a	and M20 concrete.
	1	0.57
	0.86	0.44
46	What is the alternative of Bent up bars t	to trap shear cracks?
	Chipiya	Torsional bars
	Development length	All of the Above
47	What is the value of nominal share stres	s if the cross section of beam is 230 mm x 415 mm
-	& shear force is 150000 N?	
	1.57 N/mm ²	1.55 N/mm^2
	1.53 N/mm^2	1.58 N/mm^2
48	In the compression zone, from which po	bint the length of incline bar in shear is measured?
	From Any point in beam	From centre height of beam
	From end of inclined bar	From bottom of the beam
49	Choose the correct equation.	
	Net Vus= Vus - Vus1	Vus= Vus1= Net Vus
	Vus= Net Vus+ Vus1	Net Vus= Vus + Vus1
50	What is the criteria for maximum spacir	ng of stirrups?
	Minimum of 0.5 d or 300 mm	Minimum of 0.5 d or 450 mm
	Minimum of 0.75 d or 450 mm	Minimum of 0.75 d or 300 mm
	Unit 5- De	esign of Columns
1	An R.C.C. column is treated as long if its	slenderness ratio is greater than
	30	35
	40	50
2	The diameter of longitudinal bars of a col	umn should never be less than
	12 mm	10 mm
	16 mm	20 mm
3	If the effective length of a 32 cm diameter	R.C.C. column is 4.40 m, its slenderness ratio, is
	40	45
	55	50
4	If the diameter of longitudinal bars of a so	uare column is 16 mm, the diameter of lateral ties
	should not be less than	
	4 mm	5 mm
	6 mm	8 mm

5	The minimum clear cover for R.C.C. columns shall be		
	greater of 40 mm or diameter	greater of 25 mm or diameter	
	smaller of 40 mm or diameter	smaller of 25 mm or diameter	
6	Pick up the correct statement from the following	:	
	Lateral reinforcement in R.C.C. columns	Lateral reinforcement in R.C.C. columns,	
	is provided to prevent the longitudinal	is kept not less than 5 mm diameter	
	reinforcement from buckling		
	Lateral reinforcement stops breaking	All of the above	
7	An R.C.C. column is treated as short column if i	ts slenderness ratio is less than	
/	50	40	
	25	30	
	23	50	
8	A column is regarded as long column if the ratio	of its effective length and lateral dimension	
0	exceeds		
	10	15	
	20	25	
	· ·		
9	As per IS : 456, the reinforcement in a column s	hould not be less than	
	0.5% and not more than 5% of cross-	0.6% and not more than 6% of cross-	
	sec-tional area	see-tional area	
	0.7% and not more than 7% of cross-	0.8% and not more than 6% of cross-	
	sec-tional area	sectional area	
10	For compression member if the effective length	th is three times more than and its lateral	
10	dimension then it is known as	in is three times more than and its lateral	
	Column	Beams	
	Pedestal	All of the above	
	1 cuestai		
11	Following are the reasons for acting moment	on column	
11	Gravity Load	Farthquake	
	Wind load	All of the Above	
	wind load	All of the Above	
12	The type of column in which side sway or join	at translation is not possible is	
12	Braced Column	Unbraced column	
	Pedestal	All of the above	
	1 cuestai	All of the above	
13	Which of the following is a type of column ac	cording to lateral restraint?	
15	Tied column	Composite column	
	Spiral column	All of the above	
14	Spiral or helical reinforcement are usually use	ed in	
17	Circular Column	Rectangle column	
	Tee Shaped column	All of the above	
15	For compression member if the offective lengt	th is three times less than and its lateral	
13	dimension then it is known as		
	Column	Beams	
	Column	Deams	

	Pedestal	All of the above					
1.0							
16	In actual field, column possesses an axial com	pression along with					
	Bending Moment	Shear force					
	lorsion	All above					
17	The column in which is bracing system is not provided to resist sites sway from horizontal						
1,	forces is known as						
	Braced Column	Unbraced column					
	Pedestal	All of the above					
10							
18	the purpose of lateral reinforcement in column is						
	reinforcement	To resist shear force					
	To resist bending moment	All of the above					
10							
19	The action in column which allows lateral movement of two ends of column is known as						
	Side sway	joint I ranslation					
	Both A and B	None of the above					
20	The strength of the column depends upon						
20	Material	Shape and size					
	Length	All of the above					
	Longth						
21	Usually pedestal is designed without in concrete						
	Cement	Aggregate					
	Reinforcement	None of the above					
	1						
22	Brecings are usually provided in column for						
	Longitudinal Stability	Lateral stability					
	Torsional Stability	None of the above					
23	The failure of ealure due to evid commence is a still d						
23	Buckling	Bulging					
	Shear failure	Flexure					
		TIOAUTO					
24	When when lateral ties are used in column the	e column is known as					
	Tied column	Composite column					
	Spiral column	All of the above					
25	What is the condition for a slender column?						
	le/ D= 12	le/ D >12					
	le/ D <12	None of the above					
26	Coloma and the day of the						
26	Column can be the shape of	Circular					
	Square, rectangle	Ulfcular All of the choice					
	Ell snape, Tee snape	All of the above					

is				
is				
is				
is				
0)				
)				
00 mm Ast?				
• 1				
is known as				
n is 500 mm				
8 What is the minimum slenderness ratio for a long column?				
0) 00 mm Ast? is known as n is 500 mm				

39	As per IS 456 every short column is always d	esign for						
	Bending	Minimum Eccentricity						
	Shear	All of the above						
40	The maximum compressive strain in concrete	in axial compression is taken as						
	0.002	0.004						
	0.0002	0.0004						
41	How many bars are required as a minimum reinforcement in a circular column?							
	4	2						
	6	8						
42	What is the maximum pitch allowed for helic	al reinforcement in a circular column?						
	300 mm	50 mm						
	100 mm	75 mm						
43	The vertical distance between two consecutive column ties is known as							
15	Pitch	Gauge						
	Edge Distance	None of the above						
	Luge Distuite							
44	which property of the column with belical reinforcement is greater than the column with							
	lateral ties?	inforcement is greater than the containin with						
	Durability	Flexibility						
	Ductility	All of the above						
	Ductinty							
45								
т.	For column safety in eccentricity, what is the	condition of emin?						
	$e_{min} = 20$	$e_{min} > 20$						
		None of the above						
	emin < 20							
46	Which Indian standard and its class used to de	esign actually loaded column						
	IS 1893: 2002	IS 800: 2007						
	IS 456 :2000	All of the above						
47	Which length of column is known as clear len	igth ?						
	Unsupported length of column	Floor to floor length of column						
	Centre to centre distance of column	None of the above						
48	What is the maximum spacing allowed for co	nsecutive bars in a column?						
	300 mm	200 mm						
	450 mm	100 mm						
49	What is the relation between the ultimate	axle load capacity of circular column with						
	rectangular column is							
	Pu [R] = 1.5 x Pu [C]	Pu [R] = 1.5 / Pu [C]						
	Pu[C] = 1.5 / Pu[R]	$Pu[C] = 1.5 \times Pu[R]$						
	Pu [C] = 1.5 / Pu [R]	Pu [C] = 1.5 x Pu [R]						

50	The maximum strain in concrete at the outermost compression fibre is taken as			
		0.0030		0.0035
		0.0020		0.0010

Best of Luck